112 research outputs found

    Synergism of optical and radar data for forest structure and biomassSinergismo entre dados ópticos e de radar da estrutura da floresta e biomassa

    Get PDF
    AbstractThe structure of forests, the three-dimensional arrangement of individual trees, has a profound effect on how ecosystems function and carbon cycle, water and nutrients. Repeated optical satellite observations of vegetation patterns in two-dimensions have made significant contributions to our understanding of the state and dynamics of the global biosphere. Recent advances in Remote Sensing technology allow us to view the biosphere in three-dimensions and provide us with refined measurements of horizontal as well as vertical structure of forests. This paper provides an overview of the recent advances in fusion of optical and radar imagery in assessing terrestrial ecosystem structure and aboveground biomass. In particular, the paper will focus on radar and LIDAR sensors from recent and planned spaceborne missions and provide theoretical and practical applications of the measurements. Finally, the relevance of these measurements for reducing the uncertainties of terrestrial carbon cycle and the response of ecosystems to future climate will be discussed in details. ResumoA estrutura de florestas, o arranjo tridimensional de árvores individuais, tem um efeito profundo sobre o funcionamento dos ecossistemas e do ciclo do carbono, água e nutrientes. Repetidas observações de satélite óptico de padrões de vegetação em duas dimensões trouxeram contribuições significativas para a nossa compreensão do estado e da dinâmica da biosfera global. Recentes avanços na tecnologia de Sensoriamento Remoto nos permitem ver a biosfera em três dimensões e nos fornecer medições apuradas da estrutura horizontal, bem como a vertical das florestas. Esse artigo fornece uma visão geral dos recentes avanços na fusão de imagens ópticas e de radar para avaliar a estrutura do ecossistema terrestre e biomassa. Em particular, o trabalho concentra-se em sensores radar e LIDAR de recentes missões espaciais planejadas e fornece aplicações teóricas e praticas das medições. Por fim, a relevância dessas medidas para reduzir as incertezas do ciclo de carbono terrestre e de resposta dos ecossistemas ao clima no futuro será discutida em detalhes

    Abiotic controls on macroscale variations of humid tropical forest height

    Get PDF
    Spatial variation of tropical forest tree height is a key indicator of ecological processes associated with forest growth and carbon dynamics. Here we examine the macroscale variations of tree height of humid tropical forests across three continents and quantify the climate and edaphic controls on these variations. Forest tree heights are systematically sampled across global humid tropical forests with more than 2.5 million measurements from Geoscience Laser Altimeter System (GLAS) satellite observations (2004–2008). We used top canopy height (TCH) of GLAS footprints to grid the statistical mean and variance and the 90 percentile height of samples at 0.5 degrees to capture the regional variability of average and large trees globally. We used the spatial regression method (spatial eigenvector mapping-SEVM) to evaluate the contributions of climate, soil and topography in explaining and predicting the regional variations of forest height. Statistical models suggest that climate, soil, topography, and spatial contextual information together can explain more than 60% of the observed forest height variation, while climate and soil jointly explain 30% of the height variations. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as the depth of organic matter, all present independent but statistically significant relationships to forest height across three continents. We found significant relations between the precipitation and tree height with shorter trees on the average in areas of higher annual water stress, and large trees occurring in areas with low stress and higher annual precipitation but with significant differences across the continents. Our results confirm other landscape and regional studies by showing that soil fertility, topography and climate may jointly control a significant variation of forest height and influencing patterns of aboveground biomass stocks and dynamics. Other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.The research was funded by Gabon National Park (ANPN) under the contract of 011-ANPN/2012/SE-LJTW at UCLA. We thank IIASA, FAO, USGS, NASA, Worldclim science teams for making their data available. (011-ANPN/2012/SE-LJTW - Gabon National Park (ANPN) at UCLA

    Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002

    Get PDF
    In boreal and tundra ecosystems the freeze state of soils limits rates of photosynthesis and respiration. Here we develop a technique to identify the timing of freeze and thaw transitions of high northern latitude land areas using satellite data from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I). Our results indicate that in Eurasia there was a trend toward earlier thaw dates in tundra (−3.3 ± 1.8 days/decade) and larch biomes (−4.5 ± 1.8 days/decade) over the period 1988–2002. In North America there was a trend toward later freeze dates in evergreen conifer forests by 3.1 ± 1.2 days/decade that led, in part, to a lengthening of the growing season by 5.1 ± 2.9 days/decade. The growing season length in North American tundra increased by 5.4 ± 3.1 days/decade. Despite the trend toward earlier thaw dates in Eurasian larch forests, the growing season length did not increase because of parallel changes in timing of the fall freeze (−5.4 ± 2.1 days/decade), which led to a forward shift of the growing season. Thaw timing was negatively correlated with surface air temperatures in the spring, whereas freeze timing was positively correlated with surface air temperatures in the fall, suggesting that surface air temperature is one of several factors that determines the timing of soil thaw and freeze. The high spatial resolution, frequent temporal coverage, and duration of the SMMR and SSM/I satellite records makes them suitable for rigorous time series analysis and change detection in northern terrestrial ecosystems

    Post-drought decline of the Amazon carbon sink

    Get PDF
    Amazon forests have experienced frequent and severe droughts in the past two decades. However, little is known about the large-scale legacy of droughts on carbon stocks and dynamics of forests. Using systematic sampling of forest structure measured by LiDAR waveforms from 2003 to 2008, here we show a significant loss of carbon over the entire Amazon basin at a rate of 0.3 ± 0.2 (95% CI) PgC yr−1 after the 2005 mega-drought, which continued persistently over the next 3 years (2005–2008). The changes in forest structure, captured by average LiDAR forest height and converted to above ground biomass carbon density, show an average loss of 2.35 ± 1.80 MgC ha−1 a year after (2006) in the epicenter of the drought. With more frequent droughts expected in future, forests of Amazon may lose their role as a robust sink of carbon, leading to a significant positive climate feedback and exacerbating warming trends.The research was partially supported by NASA Terrestrial Ecology grant at the Jet Propulsion Laboratory, California Institute of Technology and partial funding to the UCLA Institute of Environment and Sustainability from previous National Aeronautics and Space Administration and National Science Foundation grants. The authors thank NSIDC, BYU, USGS, and NASA Land Processes Distributed Active Archive Center (LP DAAC) for making their data available. (NASA Terrestrial Ecology grant at the Jet Propulsion Laboratory, California Institute of Technology)Published versio

    Tracking 21st century anthropogenic and natural carbon fluxes through model-data integration

    Get PDF
    Monitoring the implementation of emission commitments under the Paris agreement relies on accurate estimates of terrestrial carbon fluxes. Here, we assimilate a 21st century observation-based time series of woody vegetation carbon densities into a bookkeeping model (BKM). This approach allows us to disentangle the observation-based carbon fluxes by terrestrial woody vegetation into anthropogenic and environmental contributions. Estimated emissions (from land-use and land cover changes) between 2000 and 2019 amount to 1.4 PgC yr −1 , reducing the difference to other carbon cycle model estimates by up to 88% compared to previous estimates with the BKM (without the data assimilation). Our estimates suggest that the global woody vegetation carbon sink due to environmental processes (1.5 PgC yr −1 ) is weaker and more susceptible to interannual variations and extreme events than estimated by state-of-the-art process-based carbon cycle models. These findings highlight the need to advance model-data integration to improve estimates of the terrestrial carbon cycle under the Global Stocktake

    Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010

    Get PDF
    Funding for Open Access provided by the UMD Libraries Open Access Publishing Fund.Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates―critical inputs for setting reference emission levels for REDD+―are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010.We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25M ha•yr−1 and 0.18 ± 0.07 Pg C•yr−1 respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha−1, ~11%lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha−1). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha−1•yr−1 from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts

    Evaluating the Potential of Commercial Forest Inventory Data to Report on Forest Carbon Stock and Forest Carbon Stock Changes for REDD+ under the UNFCCC

    Get PDF
    In the context of the adoption at the 16th Conference of the Parties in 2010 on the REDD+ mitigation mechanism, it is important to obtain reliable data on the spatiotemporal variation of forest carbon stocks and changes (called Emission Factor, EF). A re-occurring debate in estimating EF for REDD+ is the use of existing field measurement data. We provide an assessment of the use of commercial logging inventory data and ecological data to estimate a conservative EF (REDD+ phase 2) or to report on EF following IPCC Guidance and Guidelines (REDD+ phase 3). The data presented originate from five logging companies dispersed over Gabon, totalling 2,240 plots of 0.3 hectares.We distinguish three Forest Types (FTs) in the dataset based on floristic conditions. Estimated mean aboveground biomass (AGB) in the FTs ranges from 312 to 333 Mg ha-1. A 5% accuracy is reached with the number of plots put in place for the FTs and a low sampling uncertainty obtained (± 10 to 13 Mg ha-1). The data could be used to estimate a conservative EF in REDD+ phase 2 and only partially to report on EF following tier 2 requirements for a phase 3

    A novel application of satellite radar data: measuring carbon sequestration and detecting degradation in a community forestry project in Mozambique

    Get PDF
    Background: It is essential that systems for measuring changes in carbon stocks for Reducing Emissions from Deforestation and Forest Degradation (REDD) projects are accurate, reliable and low cost. Widely used systems involving classifying optical satell
    • …
    corecore